UNCLASSIFIED

Defense Technical Informatipn Center
Compilation Part Notice

ADP023076

TTTLE: Synthetic Infrared Data For Target Identification Training and
Testing

[DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TTTLE: Proceedings of the Ground Target Modeling and Validation
Conference [13th] Held in Houghton, MI on 5-8 August 2002

To order the complete compilation report, use: ADA459530

The component part is provided here to allow users access to individually authored sections
ol proceedings, annals, symposia, etc. However, the component should be considered within
the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP023075 thru ADP023108

UNCLASSIFIED




Synthetic Infrared Data For Target Identification Training and Testing

Bruce A. Weber, Joseph A. Penn
U. 8. Army Research Laboratory
AMSRL-SE-SE
2800 Powder Mill Road
'Adelphi, MD 20783

ABSTRACT

The performance of infrared (IR) target identification classifiers, trained on randomly selected subsets of target chips taken
from larger databases of either synthetic or measured data, is shown to improve rapidly with increasing subset size. This
increase continues until the new data no longer provides additional information at which point classifier performance levels
off. It will also be shown that subsets of data selected with advanced knowledge can significantly outperform randomly
selected sets, suggesting that classifier training-sets must be carefully selected if optimal performance is desired.

Performance will also be shown to be dependent on the quality of data used to train the classifier. Thus while increasing
training set size generally improves classifier performance, the level of classifier performance improvement will be shown to
depend on the similarity between the training data and testing data. In fact, if the training data to be added to a given set of
training data is unlike the testing data, performance will often not improve but may possibly diminish. Having too much data
can be as bad as having too little.

Our results again [1] demonstrate that an IR target-identification classifier, trained on synthetic images of targets and tested
on measured images, can perform as well as a classifier trained on measured images alone. We also demonstrate that the
combination of the measured and the synthetic image databases can be used to train a classifier whose performance exceeds
that of classifiers trained on either database alone.

Results suggest that it may be possible to select data subsets from image databases that can optimize target classifiers
performance for specific locations and operational scenarios.

Keywords: ATR, classifier, target identification, synthetic images, infrared

INTRODUCTION

Data available to train target-identification classifiers has long been known to be insufficient to produce robust target
identification against new image datasets. This problem is due to the intimate relationship of data, the limited conditions
under which data is collected, and the statistical nature of the classifiers in representing the data,

To remedy this, statistical classifiers need large amounts of dissimilar data for training. Obtaining measured data from field-
tests is expensive so we have produced this data synthetically. To achieve this data synthesis we have created synthetic
images that not only look like measured images, but moreover perform like measured images. To this end we use a
comparison of measured, versus synthetic data trained classifier performance, as a quantitative measure of synthetic data
validation.

Over time the performance of our synthetically trained classifiers has improved. Attention to detail in the comparison of
measured and synthetic images was crucial. However, since our databases consisted of tens of thousands of images, a direct
one-to-one image comparison was impractical. Instead we made our comparisons using the image-like states of a trained K-
Means classifier. Such states, called codevectors or templates, are composite images that summarize many similar individual
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image instances. This data compression makes practical the measured versus synthetic image comparison, and the
subsequent adjustment and/or addition of new images and codevectors.

Last year we reported that synthetic-data trained classifiers could perform as well as measured-data trained classifiers [1].
However, as the subset of synthetic data was specially selected, we decided to investigate whether similar . classifier
performance could be achieved if randomly selected data was used to train the classifier.

Subsequently, we have expanded our synthetic database of four targets to slightly more than 90,432-files. From these images
we have selected subset databases of varying size to train and test our classifiers. Two techniques were used to select subsets
of synthetic image target-chips: (1) systematic unsupervised random selection to remove data bias and insure robustness to
changing test conditions, and (2) biased selection using advanced knowledge optimized performance for limited conditions.
The test database contained 5501-files of measured target-chips.

We next describe data creation, classifier training and testing, and data selection.

MEASURED IMAGE DATABASE EMULATION

For benchmark testing, we use the COMANCHE database of measured-world images. This database consists of
approximately 30,000 image scenes containing different image instances of 10 different target types, 72 angular aspects
spanning 360 degrees, three geographical locations including Yuma, Arizona, Hunter-Liggett, California, and Grayling,
Michigan, both summer and winter seasons, and full diurnal time cycle. Extracted from these scenes are approximately
22,000 target chips that are divided into two databases: the SIG database of approximately 1,500 chips/target, including all
72-target aspects every 5°, for each of 10 targets in the clear, and the ROI database of approximately 1,300 chips/target,
including only 8-target aspects every 45°, for each of 5 targets near clutter. All five of the ROI target types are included in
the set of ten SIG target types. By any measure, the ROI target images are more difficult to recognize.

For comparison we have created synthetic data that emulates four of the ten targets in the SIG database. The four ground
targets are: HMMWYV, M60, T72, M113. Of these four targets, three are targets in the ROI database. We have modeled each
target in identical conditions and locations, and have simulated realistic exercise routines to produce thermal signatures
consistent with observed data. Similar exercise information is not available as part of the ground-truth for the measured data.

SYNTHETIC-IMAGE DATABASE GENERATION

Isothermal nodes for each target model were obtained using the PRISM [2] commercial code and IR-images were rendered
using the Army Research Laboratory’s (ARL) CREATION code [3]. Figure 1 shows a schematic of the algorithmic
methodology [1] for generating, training, and testing of the synthetic target chip database. The dotted, blue Rhino-Muses [5]
generation path provides a new methodology to be used in the coming year to replace the PRISM path used in this research
for producing the isothermal target nodes.

For the purposes of this research, we quantify the validation of synthetic images by the performance to which a target
identification classifier, trained on synthetic target chips, can achieve as compared to that achieved using measured target
chips.

To create a synthetic database of ever increasing size we begin by selecting a small number of files from a large, parent
database. This becomes database A. Next we add new files to create database B. Database B and each subsequent database
of increasing size contain all the previous files selected for database A plus additional files. Each data selection is performed
so as to uniformly represent the number of different targets but not necessarily uniformly represent their aspect or operating
conditions. Files are randomly selected to form a database and then databases are enlarged, by the addition of more randomly

selected files.
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Figure 1. Iterative process for generating, training, and testing the synthetic image database.

As each database is formed a classifier is trained on the database and then the trained classifier is tested against the
sequestered ROI database of measured-data.

No effort was made to adjust the ordering of the training data since the process of training averages like data into
codevectors. Though training ordering does not affect a classifier’s performance, database selection ordering is important
with respect to database formation. (EXPLAIN THIS MORE CLEARLY!) Thus an intelligent or even lucky selection of a
subset of data can outperform an unintelligently or randomly selected subset. Of course this is true only for subsets of large
databases; when all of the data is used ordering does not matter.

CLASSIFIER TRAINING AND TESTING

The classifier used in this research was developed at ARL and is described as a minimized mean-squared-error (MSE)
encoder [4]. All input target chips, both in the training and testing phase, are intensity scaled to zero mean and unity
variance,

The classifier has two training modes: the K-Means mode, and the learning LVQ-mode. The LVQ mode is an additional
mode that adjusts the results first obtained by the K-Means mode. In the K-Means mode a target-like region (identified in a
previous step by a target detection algorithm) is extracted by a series of aspect dependent windows, enlarged to a fixed size,
and wavelet decomposed into four (4) sub-bands. The K-means mode trains the classifier by collecting like-aspect sub-band
decompositions and then creating codevectors by averaging the sum. The LVQ-mode adjusts the codevector centroids by
moving the centroids to better match the training data. For the purposes of this paper we will be using the K-Means mode
alone for classifier operation.

During the testing phase, an unknown target chip is extracted, sized, wavelet decomposed, and compared with each of the
codevectors of each of the codebooks for each of the learned targets. The commonly used similarity measure Mean-Square-
Error (MSE) is used for the comparison. The target-aspect sub-band class with the lowest MSE is declared the identity. This
declaration is made independent of correct aspect identification.

13




DATA SELECTION

Scenarios and circumstance dictate data selection for target classification training. If a large enough database existed that
contained images of targets in varying location, terrains, and seasons, then all of the data could be used to train a classifier to
perform robustly in any condition. However databases are generally quite limited in the conditions they represent thus
limiting the robustness of trained classifiers. Consequently scenario specific classifiers provide an alternate approach of
achieving desired performance. Such classifiers are developed using advanced knowledge of a test site and/or test conditions.

Advanced knowledge might include data from recent reconnaissance, previous data collections from the test site or from sites
similar in geophysical location and weather. But classifiers trained on advanced knowledge would have to be used
selectively. Clearly one would not expect good performance from a classifier trained on data of targets in the Sinai in
summer when the test site is Bosnia in winter,

- To examine these possibilities we performed two tests: one in which synthetic data was selected randomly from a larger
database to train a classifier and another in which the data was selected with advanced knowledge.

Random Data Selection

To demonstrate that synthetic data can be used to train classifiers and determine whether such training provides classifier
performance comparable to classifiers trained on measured-data, we trained classifiers on either synthetic or measured-data,
tested the trained classifiers on a sequestered set of measured-data, and compared the results.

Eight subset databases of increasing size were selected from the parent synthetic or measured databases. The selection was
done so that any single database contained all of the data of any smaller database plus additional data. The data for each
subset database, either synthetic or measured, was selected randomly. Equal percentages for each target in each subset was
maintained relative to the larger, parent database, but the distribution of target aspects, seasons, times of day, and vehicle
exercise states was not. The parent database for the measured-data contained 5,501-files and 90,432-files for the synthetic-
data. Eight subset databases of 0.5, 1, 2.5, 5, 10, 25, 50, and 100% respectively were selected from either the synthetic and
measured databases.

In addition, to testing classifiers trained on either synthetic or measured databases alone we also trained classifiers on
combinations of synthetic and measured data. This was done so as to examine if overall performance could be improved by
adding databases. If the data in the synthetic and measured datasets are similar then we might expect classifiers trained on
any combination of data from the two sets to perform similarly. However, if the data in the datasets have some target chips
that are not represented in the other set then combining data might improve the performance relative to either set alone. Of
course any increase in performance would also indicate an increased similarity with the test dataset.

Randomly choosing data to form subset databases does not guarantee that the best performing groupings would be selected.
In fact as increasing amounts of data dissimilar to the test database are added to a subset training-database some codevectors
may be readjusted to be more unlike the test data degrading performance. This problem is addressed in the next section.

Advanced Knowledge Data Selection
Next we use a 3-step procedure to demonstrate that advanced knowledge can be used to increase classifier performance for

targeted scenarios. First we divided a database of measured data into two equal sized subsets: a test dataset to be used solely
for testing purposes, and a training dataset to be used for data selection. The training subset emulates our advanced
knowledge in the form of previously obtained site data. This could be recent reconnaissance data from the test location, or
data from another similar geophysical location. Next we trained a classifier with the training dataset, ran the entire synthetic
database through the classifier and collected all files that were correctly identified. In the final step we used this selected
database of synthetic target chips to train test our classifier. The dataset tested was the sequestered remaining half of the
measured dataset not used to select the synthetic training dataset.

Two synthetic databases were selected in this way. One was chosen to emulate the ROI database and the other the SIG
database. The ROI-Like set of synthetic data was selected using the ROI set of measured data, and the SIG-Like set selected
using the SIG set of measured data.
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For example the ROI-Like database was chosen by running the entire 90,432-file synthetic database through a classifier
trained on the ROI training data. Selected ROI-Like images were required to be correct for both target identification and
target aspect. They were also required to have a confidence value greater than 0.9. The confidence value is defined to be the
difference in probability for correct identification between the first and second identification choice.of the classifier. Using
this process approximately 7,000 target chips were selected as the 3-target, ROI-Like database.

The SIG-Like database was chosen similarly. Using this process approximately 8,000 target chips were selected as the 4-
target, SIG-Like database.

These two databases taken together with the 4-target, 5,156-image SIG database, and the 3-target, 2,200-image ROI testing
database provides all of the datasets used to train and test our classifier.

RESULTS

Introduction
The two sections that follow describe our results: one addresses results obtained using randomly chosen training datasets and
the other using datasets chosen using advanced knowledge.

For the testing described below, the trained classifiers are tested on the 3-target Measured-ROI-Testing set alone. Thus for
performance in which Target 4 of the training set is not part of the testing set, no performance values are listed in column 4
since Target 4 can not be the correct identification. However this does not mean that Target 4 can not be declared fo be the
identity, only that it can not be the correct identity.

For the four-target test we are investigating, trained classifier targets 1 and 4, and targets 2 and 3 are of similar size, whereas
targets 1 and 4 are smaller than targets 2 and 3. Target 1 is a HMMWYV, target 2 is an M60, target 3 is a T72, and target 4 is
an M113. ’

For all performance results reported here we used the K-Means mode of the LVQ-classifier. The K-Means parameters were
chosen to optimize the number of codevectors generated for good target identification.

Results From Experiments Using Randomly Chosen Databases

In this section randomly selected training data is used for classifier training. Figure 2 shows four curves that summarize
classifier performance using different sets of training data. The performance is specified as the probability of correct target
identification (PID), in %/100, as a function of the percentage of the total number of training files added. For this graph a
PID of 1.0 corresponds to all targets being identified correctly.

In Figure-2 the black curve (circles) shows the increase in performance of the SIG trained classifier as the percentage of the

5156-file dataset is increased. No PID saturation is observed since the PID never levels off. This indicates that each added

increment of SIG files are sufficiently different from the SIG files used in smaller sets so as to add to the overall
performance. The maximum PID achieved is 82%.

The blue curve (squares) shows the increase in performance for the synthetic data trained classifier as a percentage of the
90,432-file dataset is increased. PID saturation is observed as the PID begins leveling off for a training set of 9,000-files and
is certainly level by about 45,000-files. Two possibilities may contribute to the PID saturation: (1) the new data being added
is not sufficiently different to aid in the training, and (2) that the number of codevectors being created in the training process
is not increasing. Figure-3 shows the increase in the number of codevectors as a function of the number of files per target is
increased. Clearly there is no saturation in the number of codevectors being created as the database size increases. This
suggests that the new data being added to the training databases is too similar to previously used files so as to not improve the
performance of the classifier. The new data is redundant with other data in the overall 90,432 database. The maximum PID
achieved is 70%. This suggests that randomly choosing data produces a smooth increase in performance, showing no
evidence of subsets of data that outperform the total, and that using the entire synthetic database produces a level of
performance 12% less than is produced by training the classifier on measured-data in the SIG database.
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Figure 2 - Performance Comparison of K-Means Trained Classifiers Tested On
Sequestered (ROI) Dataset of 5501-Files
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The green curve (diamonds) shows the improvement in PID as increasing percentages of the 90,432-file synthetic database
are added to the 5156-file SIG database. The performance is shown to improve to about a PID of 85%, a 3% increas¢ over
the performance observed using the SIG data alone. This difference is significant since the statistical uncertainty in
recognizing files from the 5501-file ROI database is about 1.3%.

The violet curve (stars) shows the improvement in PID as increasing percentages of 5156-file SIG database is added to the
90.432-file synthetic database. The performance is shown to improve to about a PID of 83%, a 13% increase over the
performance observed using the synthetic data alone and a 1% increase over the performance observed using the SIG data
alone. This statistically insignificant difference shows that the SIG, and the synthetic + SIG trained classifiers perform

essentially the same.

Clearly there is a difference between this end result here and that of the green curve (diamonds) for which one would expect
the end points to be the same, that is, both trained on all of the SIG and all of the synthetic data. The difference here is the
order in which the data used to train each subsequent classifier was selected. For the violet curve (hexagons) the classifier
was first trained on all of the synthetic data before any SIG data was added. This biases the codevectors to be synthetic like.
For the case of the green curve (diamonds) the classifier was first trained on the SIG data alone before any synthetic data was
added. For this case the codevectors were first SIG like before they were adjusted by the addition of synthetic data. We
conclude that the order in which data is added to the training process affects the final performance results achieved. We will
see further evidence of this in the next section where datasets were selected using advanced knowledge.
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Training Results
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Figure 3 - This figure shows that the number of codevectors increases as the K-means classifier is
trained on increasing amounts of synthetic data. The database included 22,608 target chips for each of

four targets or 90,432 target chips in all.

Results From Experiments Using Advanced Knowledge

In this section advanced knowledge is used to choose training data. Tables 1 to 3 enumerate the identification probability
(correct and incorrect) as a function of the target type. Such tables are termed a Confusion Matrix and the probabilities are
shown in percent. The predicted target identities are listed down the lefi-most column and the actual identities are listed
along the top-most row. The lighter, diagonal elements show the PID. A PID of 100% corresponds to all the targets of that
type being identified correctly. Off diagonal elements represent the probability of misidentification.

Table 1 shows the confusion-matrix for the K-Means classifier trained on Measured-SIG data alone and tested on the
sequestered Measured-ROI-Testing set. The overall PID is 82%. This is similar to the results reported by Chan et. al. [4].

Misidentifications of targets 2 and 3, both being tanks are often declared to be each other.

Probability of Correct Target Identification (%)
Predicted/Actual Target 1 Target 2 Target 3 Target 4
Target1 . 85 4 e T
Target 2 o4 81 IR PR -
Target 3 2 12 81 :
Target 4 9 3 5 -

Table 1. A confusion matrix sho
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wing the probability for correct Measured-ROI target identification for a classifier trained
on a database of Measured-SIG images. Overall probability for correct identification is 82%.

Table 2 shows the confusion matrix for the classifier trained on the union of the subsets of ROI-Like and SIG-Like synthetic
data and tested on the sequestered Measured-ROI-Testing set. The overall PID is 81% indicating that the synthetic data
trained classifier performs comparably to that of the Measured-SIG data trained classifier in Table 1. This is a different result




than that obtained when the synthetic-data training sets were selected randomly. In fact, comparing this result with that of the
violet curve (stars) in Figure 2, we see that at no point does the PID rise above 70%, almost 11% below the PID obtained by
choosing the training data using advanced knowledge. This suggests that using too much data that is unlike the testing data
to train a classifier can bias the classifier performance in a non-optimal way.

Probability of Correct Target Identification (%)
Predicted/Actual Target 1 Target 2 Target 3 Target 4
Target 1 90 9 14 -
Target 2 5 76 9 -
Target 3 4 14 76 -
Target 4 1 1 1 -

Table 2. A confusion matrix showing the probability for correct Measured-ROI target identification for a classifier trained on a
database of the union of the ROI-Like and SIG-Like synthetic subsets. Overall probability for correct identification is 81%.

Table 3 shows the confusion matrix for the classifier trained on the union of the Measured-SIG, SIG-Like, and ROI-Like
synthetic datasets. The overall probability for correct identification is 85%, an increase of over 3% from the single database
results for either classifier in Tables-1 and 2 above.. This demonstrates that classifier performance can be improved when
synthetic and measured databases are joined. Again misidentifications mix Target 2 for Target 3.

Probability of Correct Target Identification (%)
Predicted/Actual Target 1 Target 2 Target 3 Target 4
Target 1 85 2 4 -
Target 2 4 85 10 -
Target 3 2 8 80 -
Target 4 9 5 6 -

Table 3. A confusion matrix showing the probability for correct Measured-ROI target identification for a classifier trained
on the union of Measured-SIG, SIG-Like, and ROI-Like synthetic datasets. Overall probability for correct
identification is 85%.

For comparison, Table 4 shows the confusion matrix for the classifier trained on measured data alone. The training data
consists of the union of the Measured-SIG database and the Measured-ROI-Training subset. Again the test set is the
Measured-ROI-Testing subset. The overall PID is 88%. This augmentation of the Measured-SIG data with the Measured-
ROI-Training data increased the classifier performance by less than 9% over the results shown in Table 1. We will
benchmark this level of classifier performance since it alone uses data taken from the same database from which the testing

set was chosen.

Probability of Correct Target Identification (%)
Predicted/Actual Target 1 Target 2 Target 3 Target 4
Target 1 97 2 2 2y U
Target 2 2 85 15 -
Target 3 2 13 81 -
Target 4 0 0 o1 -

Table 4. A confusion matrix showing the probability for correct Measured-ROI-Testing image identification for a classifier
trained on a database of the union of Measured-SIG and Measured-ROI-Training images. Overall probability for correct
identification is 88%.

Using the results of Table 4 as the benchmark the relative performance for the results listed for Tables 1, 2, and 3 are 93.5,
92.4, and 96.8 percent respectively.
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CONCLUSIONS

Required target identification classifier performance specifications are dependent on application. Reconnaissance
performance specifications can be considerable poorer than fire-control specifications. For specialized scenarios specialized
classifier development will be required.

Statistical classifiers need a lot of data to train, but our results show that choosing data must be done carefully and wisely
otherwise performance can suffer. Specifically we have shown that subsets of synthetic infrared-images can be chosen
randomly to train target classifiers, and that adding synthetic databases to measured databases can improve the performance
of classifiers trained on either database alone. We have shown that a classifier, trained with synthetic images selected using
advanced knowledge, and tested on measured images, can perform as well as a classifier trained on measured images alone.
Finally we have shown that using advanced knowledge to select training data, classifiers can be trained to significantly
outperform classifiers that are trained on randomly selected training data.

Finally, we have achieved these results with relatively low-resolution images, derived from extremely low-resolution target
models. We have taken care to simulate physically reasonable target states commensurate with measured data and we have
validated our data by comparing synthetic to measured data performance in the training and testing of target classifiers. Yet
our simulations do not include target/background interactions.

New updated infrared simulators, with near real-time temperature calculations and new visualization tools are now available
[5], and soon high-resolution - models will also be available. These tools will make database development easier and more
reliable. And soon target and background thermal interactions will be modeled also.

Our methods for selecting data demonstrate that unless care is taken when choosing data, a range of performance is possible.
Yet our methods do not provide a method on how to achieve optimal performance from available databases, but the way to
proceed is clear. Choose data selectively using classifiers trained with advanced, scenario specific information from both
measured and synthetic databases, train and evaluate the classifiers performance on available or reasonably matching
measured data, and add new training data as it becomes available.

PRODUCTS

As a product of our work we have packaged our synthetic data. Datasets include the 90,432-chip, 4-target, COMANCHE-
type ground target synthetic set, the 8,000-chip training SIG-Like dataset, and the 7,000-chip, testing ROI-Like dataset. In
addition, along with each synthetic image dataset we are providing individual chip ground-truth as to geophysical location,
time of day, month, weather, and vehicle exercise history.

These sets are unclassified and available (Distribution-C) to qualified U.S. Government Agencies and their contractors.
Qualified users must agree not to distribute the data without first obtaining prior written approval from ARL.
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